Quantitative Aptitude Questions for Bank Examinations and Campus Placement :: Set - X

Leave a Comment

51. A regular octagon with sides 1 unit long is inscribed in a circle . Find the radius of the circle.

52 A regular octagon with sides 1 unit long is circumscribed in a circle . Find the radius of the circle.

53. In a recent exam, your teacher asked 2 difficult questions : "Eugenia ,which is further north, Venice or Vladivoski?" and "What is the latitude and longitude of the north pole?".Of the class, 33 1\3% of the students were wrong on the latitude question , but only 25% missed the other one. 20% answered both questions incorrectly. 37 students answered both questions correctly . How many students took the examination?

54. Two people agree to meet at a given place between noon and 1 p.m. By agreement, the first one to arrive will wait 15 min for the second, after which he will leave. What is the probability that the meeting actually take place if each of them selects his
moment of arrival at random during 12 noon to 1 p.m?

55. A positive no n, not exceeding 100 is chosen in such a way that if n is less than or equal to 50, then probabilities of choosing n is 10 and if n > 50 then it is 3p. What is the probability of choosing a square?

56. What is the greatest area of a rectangle th esum of whose 3 sides is equal = 100.
Ans. 1250 .

57. A plane figure consists of a rectangle and an equaliteral triangle constructed on one side of the rectangle . How large is the area of that figure in the term of perimeter.
Ans. 6+ sqrt(3)/132 p^2.

58. A reservoir is shaped like a regular triangle . A ferry boat goes from point A to point B both located on the bank . A cyclist who has to get form A to B can use the ferry boat or to ride along the bank . hat is the least ratio between the speed of
cyclist and the speed of the boat at which the use of the boat does not give any gain in time, the location of the point A and B being arbitrary ?
Ans. 2.

59. Find the greatest volume of the cylinder inscribred in the given cone.
Ans. V(R/3) = 4/27 * pie H*R*R

60. In a party with 1982 persons, among any group of four there is at least one person who knows each of the other three. What is the minimum no. of people in the party who know everyone else.
Ans. ??(not have)

61. In a party with 1982 persons, among any group of four there is at least one person who knows each of the other three. What is the minimum no. of people in the party who know everyone else.

62 A chord PQ is drawn on a circle. If the length of PQ is equal to the radius of the circle, then what is the probability that any line drawn at random from point P through the circle is smaller than PQ A. 1/2 B. 1/3 C. 2/3 D. 3/5.

63 Between 2 station the first, second and the third class fares were fixed in the ratio 8:6:3, but afterwards the first class were reduced by 1/6 and second class by 1/12. In a year no. of first second and third class passenger were in ratio 9:12:26 and
the money at the booking counter was 1326. How much was paid by the first class passenger?
A. 320 B. 390 C.420 D. None. Of these.

64 . A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one, and a blue one, so that each box contains at least one card. A member of the audience selects two of the three boxes, chooses one card from
each, and announces the sum of the numbers on the chosen cards. Given this sum, the magician identifies the box from which no card has been chosen. How many ways are there to put all the cards into the boxes so that this trick always works? (Two ways
are considered different if at least one card is put into a different box.)

65. On a circle are marked 999 points. How many ways are there to assign to each point one of the letters A, B, or C, so that on the arc between any two points marked with the same letter, there are an even number of letters differing from these two

66. On a train are riding 175 passengers and 2 conductors. Each passenger buys a ticket only after the third time she is asked to do so. The conductors take turns asking a passenger who does not already have a ticket to buy one, doing so until all passengers have bought tickets. How many tickets can the conductor who goes first be sure to sell?

67. Around a table are seated representatives of n countries (n greater than or equal to 2), such that if two representatives are from the same country, their neighbors on the right are from two different countries. Determine, for each n, the maximum number of representatives.

0 comments:

Post a Comment